Package: OrdMonReg 1.0.3
OrdMonReg: Compute least squares estimates of one bounded or two ordered isotonic regression curves
We consider the problem of estimating two isotonic regression curves g1* and g2* under the constraint that they are ordered, i.e. g1* <= g2*. Given two sets of n data points y_1, ..., y_n and z_1, ..., z_n that are observed at (the same) deterministic design points x_1, ..., x_n, the estimates are obtained by minimizing the Least Squares criterion L(a, b) = sum_{i=1}^n (y_i - a_i)^2 w1(x_i) + sum_{i=1}^n (z_i - b_i)^2 w2(x_i) over the class of pairs of vectors (a, b) such that a and b are isotonic and a_i <= b_i for all i = 1, ..., n. We offer two different approaches to compute the estimates: a projected subgradient algorithm where the projection is calculated using a PAVA as well as Dykstra's cyclical projection algorithm.
Authors:
OrdMonReg_1.0.3.tar.gz
OrdMonReg_1.0.3.zip(r-4.5)OrdMonReg_1.0.3.zip(r-4.4)OrdMonReg_1.0.3.zip(r-4.3)
OrdMonReg_1.0.3.tgz(r-4.4-any)OrdMonReg_1.0.3.tgz(r-4.3-any)
OrdMonReg_1.0.3.tar.gz(r-4.5-noble)OrdMonReg_1.0.3.tar.gz(r-4.4-noble)
OrdMonReg_1.0.3.tgz(r-4.4-emscripten)OrdMonReg_1.0.3.tgz(r-4.3-emscripten)
OrdMonReg.pdf |OrdMonReg.html✨
OrdMonReg/json (API)
NEWS
# Install 'OrdMonReg' in R: |
install.packages('OrdMonReg', repos = c('https://numbersman77.r-universe.dev', 'https://cloud.r-project.org')) |
- mechIng - Mechanical engineering dataset used to illustrate ordered isotonic regression
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 13 years agofrom:0d35fffb88. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 23 2024 |
R-4.5-win | NOTE | Nov 23 2024 |
R-4.5-linux | NOTE | Nov 23 2024 |
R-4.4-win | NOTE | Nov 23 2024 |
R-4.4-mac | NOTE | Nov 23 2024 |
R-4.3-win | OK | Nov 23 2024 |
R-4.3-mac | OK | Nov 23 2024 |
Exports:astar_1BoundedAntiMeanBoundedAntiMeanTwoBoundedIsoMeanBoundedIsoMeanTwoBoundedIsoMeanTwoDykstrabstar_ndispLSfunctionalMAminK1minK2minK3Subgradient
Dependencies: